Species Tag: Version: Date: Contributor:	76010 1 May 1996 H. S. P. Müller	Species Name:	C5O Pentacarbon monoxide X $^1\Sigma^+$
Lines Listed:	99	Q(300.0) =	4574.6813
Freq. $(GHz) <$	271	Q(225.0) =	3430.8963
Max. J:	99	Q(150.0) =	2287.2410
LOGSTR0 =	-8.0	Q(75.00) =	1143.7201
LOGSTR1 =	-3.0	Q(37.50) =	572.0100
Isotope Corr.:		Q(18.75) =	286.1677
Egy. $(cm^{-1}) >$	0.0	Q(9.375) =	143.2498
$\mu_a =$	4.057	A=	
$\mu_b =$		B=	1366.8471
$\mu_c =$		C=	

The data were taken from T. Ogata, Y. Ohshima, and Y. Endo, 1995, J. Am. Chem. Soc. 117 3593.

The dipole moment is from an *ab initio* calculation: P. Botschwina, J. Flügge, and P. Sebald, 1995, J. Phys. Chem. **99** 9755. N. Moazzen-Ahmadi and F. Zerbetto, 1995, J. Chem. Phys. **103**, 6343, obtained 3.376. The former calculation is expected to be more reliable.

The partition function has been calculated up to J=250 because of the low rotational constant.